Math 241
 Winter 2024
 Lecture 6

Feb 19-8:47 AM
class QE 5
find the area of the triangle below

GAS
$=\frac{1}{2} \cdot 10 \cdot 14 \cdot \frac{1}{2}=35 \mathrm{~cm}^{2}$
unit as Cm Distance
unit as
$\mathrm{Cm}^{\mathrm{O}-}$ Angle

Draw 120° in standard position. Give its ref. angle in degrees. vertex at (0,0) Initial side on x-axis, $x>0$.
Angle $>0 \rightarrow$ counter clock wise
Angle $<0 \rightarrow \quad$ Clockwise

Draw $-\frac{5 \pi}{3}$ in standard position. Find its ref. angle in radians. we should recognize that $\frac{\pi}{3}=60^{\circ}$

$$
-\frac{5 \pi}{3}=-5\left(60^{\circ}\right)=-300^{\circ}
$$

Ref. angle is $\frac{\pi}{3}$

Jan 10-8:13 AM

what about $30^{\circ}, 60^{\circ}$, and 45° ?

Jan 10-8:34 AM

Now let's do 45° in QI:

$$
\begin{aligned}
& x \\
& x^{2}+x^{2}=1^{2} \\
& 2 x^{2}=1 \\
& x^{2}=\frac{1}{2} \quad x=\sqrt{\frac{1}{2}} \\
& x=\frac{\sqrt{1}}{\sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sin 45^{\circ}=\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2} \\
& \cos 45^{\circ}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2} \\
& \tan 45^{\circ}=\tan \frac{\pi}{4}=1
\end{aligned}
$$

Degrees	0°	30°	45°	60°	90°	180°	270°	360°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
Sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
\tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	und.	0	und. 0	

A circular Sector has a central angle of 150° with radius 10 cm .

1) find its area

$$
A=\frac{1}{2} r^{2} \theta=\frac{1}{2} \cdot 10^{2} \cdot \frac{5 \pi}{6}=\frac{125 \pi}{3}
$$

2) find its arc length.

$$
S=r \theta=10 \cdot \frac{5 \pi}{6}=\frac{25 \pi}{3} \mathrm{~cm}
$$

Simplify

$$
\begin{aligned}
& \sin ^{2} \alpha(\underbrace{1+\cot ^{2} \alpha}_{\csc ^{2} \alpha}) \\
& =\sin ^{2} \alpha \cdot \csc ^{2} \alpha=(\underbrace{\sin \alpha \cdot[\operatorname{sc} \alpha}_{1})^{2}=1^{2}=1
\end{aligned}
$$

verify

$$
\begin{aligned}
\sec ^{4} x-\sec ^{2} x & =\tan ^{4} x+\tan ^{2} x \\
\sec ^{4} x-\sec ^{2} x & =\sec ^{2} x\left(\sec ^{2} x-1\right) \\
& =\left(1+\tan ^{2} x\right)\left(1+\tan ^{2} x-1\right) \\
& =\tan ^{2} x\left(1+\tan ^{2} x\right)=\tan ^{2} x+\tan ^{4} x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Verify } \begin{aligned}
\text { LHS } & =\frac{1+\sin \theta}{1-\sin \theta}-\frac{1-\sin \theta}{1+\sin \theta}=(1+\sin \theta)(1+\sin \theta)
\end{aligned} \frac{1+\tan \theta \cdot \sec \theta}{(1+\sin \theta)(1-\sin \theta)} \\
& \\
& =\frac{1+2 \sin \theta+\sin ^{2} \theta-(1-2 \sin \theta)}{\left(1-\sin ^{2} \theta\right)} \\
& \\
& =\frac{1+2 \sin \theta)(1+\sin \theta)}{1-\sin ^{2} \theta-1+2 \sin \theta-\sin ^{2} \theta} \\
&
\end{aligned}
$$

Jan 10-9:16 AM

$$
\begin{aligned}
& \text { Verify } \\
& \qquad \begin{aligned}
(\sec \alpha-\tan \alpha)^{2}= & 1-\sin \alpha \\
\text { LHS } & =\left(\frac{1}{\cos \alpha}-\frac{\sin \alpha}{\cos \alpha}\right)^{2} \\
& =\left(\frac{1-\sin \alpha}{\cos \alpha}\right)^{2}
\end{aligned} \\
& =\frac{(1-\sin \alpha)^{2}}{\cos ^{2} \alpha} \\
& \\
& \text { Recall } \\
& \begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \\
& \cos ^{2} x=1-\sin ^{2} x=\frac{(1-\sin \alpha)(1-\sin \alpha)}{1-\sin ^{2} \alpha} \\
&=\frac{(1-\sin \alpha)(1-\sin \alpha)}{1+\sin \alpha)(1+\sin \alpha)} \\
&=\operatorname{Rin} \alpha
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Verify } \\
& \qquad \begin{aligned}
& \frac{\sin \theta}{1-\cos \theta}-\frac{\sin \theta \cos \theta}{1+\cos \theta}=\csc \theta\left(1+\cos ^{2} \theta\right) \\
& \text { LHS }=\frac{\sin \theta(1+\cos \theta)}{(1-\cos \theta)(1+\cos \theta)}-\frac{\sin \theta \cos \theta(1-\cos \theta)}{(1+\cos \theta)(1-\cos \theta)}
\end{aligned} \\
& =\frac{\sin \theta(1+\cos \theta)-\sin \theta \cos \theta(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)} \\
& =\frac{\sin \theta+\sin \theta \cos \theta-\sin \theta \cos \theta+\sin \theta \cos ^{2} \theta}{1-\cos ^{2} \theta} \\
& \\
& =\frac{\sin \theta\left(1+\cos ^{2} \theta\right)}{\sin ^{2} \theta}=\frac{1+\cos ^{2} \theta}{\sin \theta} \\
& =\frac{1}{\sin \theta) \cdot\left(1+\cos ^{2} \theta\right)} \\
& =\left(\csc \theta\left(1+\cos ^{2} \theta\right)\right.
\end{aligned}
$$

Jan 10-10:06 AM

$$
\begin{aligned}
& \text { Verify } \\
& \frac{1}{\tan x-\operatorname{Sec} x}+\frac{1}{\tan x+\operatorname{Sec} x}=-2 \tan x
\end{aligned}
$$

$$
\text { LHS }=\frac{1(\tan x+\operatorname{Sec} x)+1(\tan x-\operatorname{Sec} x)}{(\tan x-\operatorname{Sec} x)(\tan x+\operatorname{Sec} x)}=
$$

$$
\begin{array}{cc}
\frac{2 \tan x}{\tan ^{2} x-\sec ^{2} x}= & =A \\
\frac{2 \tan x}{\sec ^{2} x-1-\sec ^{2} x}= & \tan ^{2+\tan } \\
\frac{2 \tan x}{-1}=-2 \tan x & \text { RHS }
\end{array}
$$

$$
=A^{2}-B^{2}
$$

Recall

$$
\xrightarrow[\tan ^{2} x=\operatorname{Sec}^{2} x-1]{1+\tan ^{2} x=\operatorname{Sec}^{2} x}
$$

Verify

$$
\begin{aligned}
& \frac{\sin ^{3} x+\cos ^{3} x}{A^{3}+B^{3}}=\frac{(\sin x+\cos x)(1-\sin x \cos x)}{\text { factored }} \\
& A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right)
\end{aligned}
$$

$$
\sin ^{3} x+\cos ^{3} x=(\sin x+\cos x) \sin ^{2} x-\sin x \cos x+\cos ^{2} x
$$

$$
=\frac{(\sin x+\cos x)(1-\sin x \cos x)}{\text { RHS }}
$$

Jan 10-10:21 AM

$$
\begin{aligned}
& \begin{array}{ll}
\text { Verify } & \left.\begin{array}{r}
\operatorname{Recall} \\
(A-B)^{2}= \\
(\operatorname{Sec} \theta-\tan \theta)^{2}+1 \\
\hline
\end{array}\right)=2 \tan \theta
\end{array} \\
& \sec \theta \csc \theta-\tan \theta \csc \theta \\
& \text { LHS }=\frac{\sec ^{2} \theta-2 \sec \theta \tan \theta+\tan ^{2} \theta+1}{\csc \theta(\sec \theta-\tan \theta)} \\
& =\frac{2 \sec ^{2} \theta-2 \sec \theta \tan \theta}{\csc \theta(\sec \theta-\tan \theta)} \\
& =\frac{2 \sec \theta(\sec \theta-\tan \theta)}{\csc \theta(\sec \theta-\tan \theta)}=2 \cdot \frac{\frac{1}{\cos \theta}}{\left.\frac{1}{\sin \theta}\right)} \\
& =2 \cdot \frac{1}{\cos \theta} \cdot \frac{\sin \theta}{1}=\frac{2 \sin \theta}{\cos \theta}=2 \tan \theta \text { RHS }
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \sin ^{2} x(1+\cot x)+\cos ^{2} x(1-\tan x)+\cot ^{2} x \\
& =\underbrace{\sin ^{2} x}+\sin ^{2} x \cdot \cot x+\cos ^{2} x-\cos ^{2} x \cdot \operatorname{Tan} x+\cot ^{2} x \\
& =\frac{1}{2}+\sin ^{2} x \cdot \frac{\cos x}{\sin x}-\cos ^{2} x \cdot \frac{\sin x}{\cos x}+\cot ^{2} x \\
& =\csc ^{2} x+\sin x \cos x-\cos x \sin x \\
& =\csc ^{2} x
\end{aligned}
$$

How to find values of trig. functions in QII, QII, or QIV:

1) Find the ref, angle
2) Find the value of trig. Function of the ref. angle
3) Determine its Sign
ex: find $\sin 150^{\circ}=+\sin 30^{\circ}$

$$
\begin{aligned}
=\frac{1}{2} \quad \begin{aligned}
& \text { Now } \\
& \cos 150^{\circ}=-\cos 30^{\circ} \\
&=-\frac{\sqrt{3}}{2} \\
& \text { What about } \\
& \tan 150^{\circ}=-\tan 30^{\circ}
\end{aligned}=-\frac{\sqrt{3}}{3}
\end{aligned}
$$

Find $\operatorname{Sin} 240^{\circ}$

$$
\begin{aligned}
& \sin 240^{\circ}=-\sin 60^{\circ}=-\frac{\sqrt{3}}{2} \\
& \cos 240^{\circ}=-\cos 60^{\circ}=-\frac{1}{2} \\
& \tan 240^{\circ}=+\tan 60^{\circ}=\sqrt{3}
\end{aligned}
$$

Jan 10-10:49 AM
find $\sin \frac{7 \pi}{4}, \cos \frac{7 \pi}{4}$, and $\tan \frac{7 \pi}{4}$.

Recall $\frac{\pi}{4}=45^{\circ}$

$\sin \frac{7 \pi}{4}=-\sin \frac{\pi}{4}=-\frac{\sqrt{2}}{2}$
$\operatorname{Cos} \frac{7 \pi}{4}=+\operatorname{Cos} \frac{\pi}{4}=\frac{\sqrt{2}}{2}$
$\tan \frac{7 \pi}{4}=-\tan \pi / 4=-1$
find $\sin (-225)^{\circ}, \cos (-225)^{\circ}$, and $\tan (-225)^{\circ}$.

$$
\text { QII } \quad \begin{aligned}
& \sin (-225)^{\circ}=+\sin 45^{\circ}=\frac{\sqrt{2}}{2} \\
& \cos \left(-225^{\circ}=-\cos 45^{\circ}=-\frac{\sqrt{2}}{2}\right. \\
& \tan \left(-225^{\circ}\right)=-\tan 45^{\circ}=-1
\end{aligned}
$$

find the value of all six trig functions for angle - 390°.

Jan 10-10:57 AM
find values of all six trig functions of angle $\frac{7 \pi}{6}$.

$$
\begin{aligned}
& \frac{\pi}{6}=30^{\circ} \\
& \frac{7 \pi}{6}=7\left(30^{\circ}\right)=210^{\circ}
\end{aligned}
$$

we are in QIII

$$
\begin{array}{ll}
\sin \frac{7 \pi}{6}=-\frac{1}{2} & \csc \frac{7 \pi}{6}=-2 \\
\cos \frac{7 \pi}{6}=-\frac{\sqrt{3}}{2} & \sec \frac{7 \pi}{6}=-\frac{2 \sqrt{3}}{3} \\
\tan \frac{7 \pi}{6}=+\frac{\sqrt{3}}{3} & \cot \frac{7 \pi}{6}=\sqrt{3}
\end{array}
$$

Jan 10-11:14 AM

Intro. To bearing
Method I: Measuring from North axis, going
clockwise
ex: Bearing of 100°

ex. Bearing of 135°
ex: Bearing of 300°

Method II: Measuring from North and South axis in the direction of East and
ex: $N 10^{\circ} \mathrm{E}$

ex: $N 40^{\circ} \mathrm{W}$
ex: $S 60^{\circ} \mathrm{E}$

Jan 10-11:37 AM

Draw as you read
Points A and B are on East-West line and
3.7 km apart.

Bearing of a plane from Point A is 61°.
Bearing of the plane from Point B is 331°.

we have a right triangle

How far is the plane from both radar Stations A غ. B ?

$$
\begin{aligned}
& \sin 61^{\circ}=\frac{a}{3.7} \\
& a=3.7 \cdot \sin 61^{\circ} \\
& a \approx 3.2 \mathrm{~km}
\end{aligned}
$$

A ship has a speed of 22 knots (22 mph).
It leaves a port with a bearing of $N 47^{\circ} E$.
 then it turns and has a bearing of $S 43^{\circ} \mathrm{E}$.

Suppose the ship sailed for 3 hrs before changing direction and it sailed 2 hrs on new bearing. How far is the ship from the Original Port?

$$
\begin{aligned}
d^{2} & =66^{2}+44^{2} \\
& =6292 \\
d & =\sqrt{6292} \\
& =79.322 \\
& \approx 79 \text { miles }
\end{aligned}
$$

Jan 10-11:52 AM
class QZ 6
Draw angles in standard position, find its ref. angle

